Who is this course for?
Course Syllabus
-
-
Course Objectives
-
Resources for the Course
-
-
-
1 Intro to DL
-
2 Understanding Deep Learning
-
3 What is a Neuron
-
-
-
4 Activation Functions
-
5 Step Function
-
6 Linear Function
-
7 Sigmoid Function
-
8 TanH Function
-
9 ReLU
-
-
-
10 BP + FP
-
11 Gradient Descent
-
-
-
12.1 ANN Intuition
-
12.2 ANN Code
-
12.3 ANN HPO
-
Exercise: ANN
-
-
-
13 CNN - What is CNN
-
13 CNN - Steps in CNN
-
14 CNN - CNN Architecture Explained
-
15 CNN - Image Augmentation
-
16 CNN - Batch size vs iterations vs epochs
-
17 CNN - Code Implementation of CNN
-
18 CNN - Model Summary _ Parameters
-
19 CNN - Hands on XRAY
-
Exercise: CNN
-
-
-
20.1 RNN Basics
-
20.2 Types of RNN
-
20.3 RNN VG+EG
-
Exercise: Neural Networks
-
-
-
21.1 LSTM
-
21.2 LSTM code
-
-
-
NLP1
-
NLP2-1
-
NLP2-2
-
NLP2-3
-
NLP2-4
-
NLP2-5
-
NLP2-6
-
NLP2-7
-
Exercise: NLP
-
Exercise: Sentiment Analysis
-
-
-
DL Quiz
-
NLP Quiz
-
Deep Learning Project
-
Computer Vision Project
-
Natural Language Processing
-
Course Outcomes
-
Here's what next!
-